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Abstract. We calculate the asymptotic merit factor, under all rotations of

sequence elements, of two families of binary sequences derived from Legendre

sequences. The rotation is negaperiodic for the first family, and periodic for
the second family. In both cases the maximum asymptotic merit factor is 6.

As a consequence, we obtain the first two families of skew-symmetric sequences

with known asymptotic merit factor, which is also 6 in both cases.

1. Introduction

We consider a sequence A of length n to be an n-tuple (a0, a1, . . . , an−1) of real
numbers. The aperiodic autocorrelation of A at shift u is

CA(u) :=


n−u−1∑

j=0

ajaj+u for 0 ≤ u < n

CA(−u) for −n < u < 0,

and its energy E(A) is CA(0). Provided that
∑

0<|u|<n[CA(u)]2 > 0, the merit
factor of A is defined to be

F (A) :=
[E(A)]2∑

0<|u|<n

[CA(u)]2
.
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The sequence A = (a0, a1, . . . , an−1) of length n is called binary if each aj takes
the value +1 or −1, in which case E(A) = n. Let Fn be the maximum value of the
merit factor over the set of all 2n binary sequences of length n. The Merit Factor
Problem, which is to determine the value of lim supn→∞ Fn, is important not only in
digital communications engineering but also in complex analysis, theoretical physics,
and theoretical chemistry (see [5] for a survey, and [6] for background on related
problems). The current state of knowledge on this problem can be summarised
as 6 ≤ lim supn→∞ Fn ≤ ∞, where the lower bound arises from an analysis due to
Høholdt and Jensen [4] of a periodically rotated Legendre sequence (see Theorem 2).
There is also considerable numerical evidence, though currently no proof, that an
asymptotic merit factor greater than 6.34 can be achieved for a family of binary
sequences related to Legendre sequences [2].

In this paper we determine the asymptotic merit factor, at all rotations of se-
quence elements, of two families of binary sequences constructed from a Legendre
sequence of length n. The first family is derived from a “negaperiodic” construc-
tion described by Parker [8], and its sequences have length 2n; the second family
is derived from a “periodic” construction described by Yu and Gong [12], and its
sequences have length 4n. For both families, the maximum asymptotic merit fac-
tor over all rotations is 6, equal to the best proven result for lim supn→∞ Fn. For
the negaperiodic construction, the maximum value of 6 was previously proved by
Xiong and Hall [11] for two specific negaperiodic rotations, following numerical work
in [8], but no asymptotic merit factor values at other negaperiodic rotations were
previously known. For the periodic construction, the general form of the merit fac-
tor over all periodic rotations was determined numerically for large n by Yu and
Gong [12], but no asymptotic values were previously known.

A skew-symmetric sequence is a binary sequence (a0, a1, . . . , a2m) of odd length
2m+ 1 for which

(1) am+j = (−1)jam−j for 0 < j ≤ m.

By slight modification of the negaperiodic and periodic constructions we obtain
two families of skew-symmetric sequences, each with asymptotic merit factor 6 (see
Corollaries 6 and 9). To our knowledge, these are the first constructions of families
of skew-symmetric sequences for which the asymptotic merit factor has been cal-
culated. Historically, skew-symmetric sequences were considered to be good candi-
dates for a large merit factor, in part because half of their aperiodic autocorrelation
coefficients are guaranteed to be zero (see [5, Section 3.1] for background). While
skew-symmetric sequences of length n that attain the optimal merit factor value Fn

are known for

n ∈ {3, 5, 7, 9, 11, 13, 15, 17, 21, 27, 29, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59},

they are not known for any larger values of n, because the value of Fn itself is not
known for n > 60 [5]. Golay [3] argued heuristically that the supremum limit of
the merit factor of the set of skew-symmetric sequences is equal to lim supn→∞ Fn,
which would imply that nothing is lost by restricting attention to the subset of
binary sequences that are skew-symmetric (see [5, Section 4.7] for a discussion).
In view of this, it is particularly interesting that the asymptotic merit factor of
the skew-symmetric sequence families constructed here is equal to the best proven
result for lim supn→∞ Fn, namely 6.
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2. Definitions and Notation

In this section we introduce further definitions and notation for the paper.
Let A = (a0, a1, . . . , an−1) and B = (b0, b1, . . . , bn−1) be sequences of equal

length n. The aperiodic crosscorrelation between A and B at shift u is

CA,B(u) :=


n−u−1∑

j=0

ajbj+u for 0 ≤ u < n

CB,A(−u) for −n < u < 0,

and the periodic crosscorrelation between A and B at shift u is

RA,B(u) :=
n−1∑
j=0

ajb(j+u) mod n for 0 ≤ u < n.

By adopting the convention that CA,B(−n) = 0, we can write

(2) RA,B(u) = CA,B(u) + CA,B(u− n) for 0 ≤ u < n.

The aperiodic autocorrelation CA(u) defined in Section 1 equals CA,A(u) for
|u| < n. From the definition of CA(u) and F (A) we have the relation

(3)
1

F (A)
= −1 +

1
[E(A)]2

∑
|u|<n

[CA(u)]2

for the reciprocal merit factor 1/F (A). The periodic autocorrelation of A at shift u
is

RA(u) := RA,A(u) for 0 ≤ u < n.

Given a sequence A = (a0, a1, . . . , an−1) of length n, we write [A]j to denote
the sequence element aj . Let A = (a0, a1, . . . , an−1) and B = (b0, b1, . . . , bm−1) be
sequences of length n and m, respectively. The concatenation A;B of A and B is
the length n+m sequence given by

[A;B]j :=

{
aj for 0 ≤ j < n

bj−n for n ≤ j < n+m.

Provided gcd(m,n) = 1, the product sequence A⊗B of length mn is defined by

[A⊗B]j := aj mod nbj mod m for 0 ≤ j < mn,

and the m-decimation of A is the length n sequence C defined by

[C]j := amj mod n for 0 ≤ j < n.

The periodic rotation Ar of A by a fraction r of its length (for any real r) is the
length n sequence given by

[Ar]j := a(j+bnrc) mod n for 0 ≤ j < n,(4)

and the negaperiodic rotation A
er of A by the fraction r is the length n sequence

given by

[A
er]j :=

{
a(j+bnrc) mod n for 0 ≤ j < n− bnrc

−a(j+bnrc) mod n for n− bnrc ≤ j < n.
(5)
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The sequence A
er can be viewed as the first n elements of the length 2n sequence

(A;−A) r
2
. For example, take r = 2

7 and A = (+,+,+,−,+,−,−), where + and −
represent sequence elements +1 and −1, respectively. Then we have

Ar = (+,−,+,−,−,+,+),

A
er = (+,−,+,−,−,−,−).

(A;−A) r
2

= (+,−,+,−,−,−,−,−,+,−,+,+,+,+).

3. Legendre Sequences

This section describes Legendre sequences and their asymptotic merit factor
properties. (See [10], for example, for background on number-theoretic properties
of Legendre sequences.)

Given a prime n and an integer j, the Legendre symbol (j |n) is defined as

(j |n) :=


0 for j ≡ 0 (mod n)
−1 for j not a square modulo n
+1 otherwise.

The Legendre symbol is multiplicative, so that

(6) (a |n) (b |n) = (ab |n),

and

(7) a ≡ b (mod n) implies (a |n) = (b |n).

A Legendre sequence X = (x0, x1, . . . , xn−1) of prime length n is defined by

xj :=

{
1 for j = 0
(j |n) for 0 < j < n.

In our analysis it will often be convenient to change the initial element in a Legendre
sequence to be zero, so that

xj = (j |n) for 0 ≤ j < n.

Then we will call X a modified Legendre sequence. The periodic autocorrelation
function of a modified Legendre sequence X is given [10, p. 294] by

(8) RX(u) = −1 for 0 < u < n.

We shall make repeated use of the following result, under which up to o(
√
n)

elements of a sequence of length n can be changed by a bounded amount without
altering the asymptotic reciprocal merit factor:

Proposition 1. Let {A(n)} and {B(n)} be sets of sequences, where each of A(n)
and B(n) has length n. Suppose that, for each n, all elements of A(n) and B(n)
are bounded in magnitude by a constant independent of n. Suppose further that, as
n −→ ∞, the number of nonzero elements of B(n) is o(

√
n) and that F (A(n)) =

O(1) and E(A(n)) = Ω(n).1 Then, as n −→ ∞, the elementwise sequence sums

1We use the notation o, O, and Ω to compare the growth rates of functions f(n) and g(n) from
N to R+ in the following standard way: f(n) = o(g(n)) means that f(n)/g(n) → 0 as n → ∞;

f(n) = O(g(n)) means that there is a constant c, independent of n, for which f(n) ≤ cg(n) for all
sufficiently large n; and f(n) = Ω(g(n)) means that g(n) = O(f(n)).
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{A(n) +B(n)} satisfy

1
F (A(n) +B(n))

=
1

F (A(n))
(1 + o(1)).

Proof. For each n, by the definition of aperiodic autocorrelation and crosscorrelation
we have

CA(n)+B(n)(u) = CA(n)(u) + CB(n)(u) + CA(n),B(n)(u) + CB(n),A(n)(u) for |u| < n.

Since, by assumption, all elements of A(n) and B(n) are bounded in magnitude by
a constant independent of n, and the number of nonzero elements of B(n) is o(

√
n)

as n −→∞, it follows that

(9) CA(n)+B(n)(u) = CA(n)(u) + o(
√
n) as n −→∞.

This implies by the definition of F (A(n) +B(n)) that, as n −→∞,

1
F (A(n) +B(n))

=
1

[E(A(n) +B(n))]2
∑

0<|u|<n

[CA(n)(u) + o(
√
n)]2

=
1

[E(A(n) +B(n))]2

( ∑
0<|u|<n

[CA(n)(u)]2

+ o(n)
√ ∑

0<|u|<n

[CA(n)(u)]2 + o(n2)

)
(10)

since, by the Cauchy–Schwarz inequality,∑
0<|u|<n

o(
√
n)CA(n)(u) ≤

√√√√( ∑
0<|u|<n

o(n)
)( ∑

0<|u|<n

[CA(n)(u)]2
)
.

Now by setting u = 0 in (9) and dividing by E(A(n)) we obtain, as n −→∞,

E(A(n) +B(n))
E(A(n))

= 1 +
o(
√
n)

E(A(n))
= 1 + o(1),

since E(A(n)) = Ω(n) by assumption. The square of the reciprocal of this relation
is

[E(A(n))]2

[E(A(n) +B(n))]2
= 1 + o(1) as n −→∞.

Substitute in (10) and use the definition of F (A(n)) to show that, as n −→∞,

1
F (A(n) +B(n))

=
1

F (A(n))
(1 + o(1))

(
1 + o(n)

√
F (A(n))
E(A(n))

+ o(n2)
F (A(n))

[E(A(n))]2

)

=
1

F (A(n))
(1 + o(1)),

since F (A(n)) = O(1) and E(A(n)) = Ω(n) by assumption.

A result similar to Proposition 1 was stated in Corollary 6.3 of [2], but with con-
ditions on the asymptotic growth of the sequence elements A(n) and their merit
factor F (A(n)) mistakenly omitted.
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The asymptotic merit factor of a Legendre sequence has been calculated at all
periodic rotations:

Theorem 2 (Høholdt and Jensen [4]). Let X be a Legendre sequence of prime
length n > 2, and let r be a real number satisfying |r| ≤ 1

2 . Then

1
lim

n−→∞
F (Xr)

= 1
6 + 8

(
|r| − 1

4

)2
.

The constraint |r| ≤ 1
2 in Theorem 2 is for notational convenience only, since by

definition Xr is the same as Xr+1 for any real r. By Proposition 1, Theorem 2 also
holds for the modified Legendre sequence X ′ of length n, since X ′

r differs from Xr

in exactly one element for each n. The exact, rather than the asymptotic, value of
F (Xr) in Theorem 2 has been calculated [1] by refining the analysis of [4], but the
exact value is not required here.

The following generalisation of Theorem 2 is a key tool of this paper:

Theorem 3. Let X be a modified Legendre sequence of prime length n > 2, and let
r, s, and t be real numbers satisfying |r+ s+t

2 | ≤ 1
2 , |s| ≤ 1

2 , and |t| ≤ 1
2 . Let {r(n)},

{s(n)}, and {t(n)} be sets of real numbers such that ns(n) and nt(n) are integer
for each n, and such that, as n −→∞, r(n) = r+O(n−1), s(n) = s+O(n−1), and
t(n) = t+O(n−1). Then, as n −→∞,

1
n2

∑
|u|<n

CXr(n), Xr(n)+s(n)(u)CXr(n)+t(n), Xr(n)+s(n)+t(n)(u)

= 1
6 + 8(|r + s+t

2 | − 1
4 )2 + 2(|s| − 1

2 )2 + 2(|t| − 1
2 )2 +O(n−1(log n)2).

Proof. See Appendix.

We can recover Theorem 2 from Theorem 3 by setting r(n) = r and s(n) = t(n) = 0
for each n, applying (3), using Proposition 1 to alter the initial element and thereby
change a modified Legendre sequence into a Legendre sequence, and then taking the
limit as n −→∞. There is no loss of generality in Theorem 3 from the restrictions
|r + s+t

2 | ≤ 1
2 , |s| ≤ 1

2 , and |t| ≤ 1
2 , since Xr+1 = Xr for all r. Nonetheless, we will

find it useful to define, for real r, s, t, c,

φ(r, c) :=

{
(|r| − c)2 for |r| ≤ 1

2

φ(r + 1, c) for all r, c
(11)

and

ψ(r, s, t) := 1
6 + 8φ(r + s+t

2 , 1
4 ) + 2φ(s, 1

2 ) + 2φ(t, 1
2 ),(12)

so that the conclusion of Theorem 3 can be rephrased to hold for unrestricted r, s,
t as n −→∞:
1
n2

∑
|u|<n

CXr(n), Xr(n)+s(n)(u)CXr(n)+t(n), Xr(n)+s(n)+t(n)(u)

= ψ(r, s, t) +O(n−1(log n)2).(13)

It is easily verified that φ(r + 1
2 ,

1
4 ) = φ(r, 1

4 ) for all r, which implies that

(14) φ(r, 1
4 ) = φ(r′, 1

4 ) provided r′ = r + a
2 for some integer a.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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4. The Negaperiodic Construction

In this section we present the first of our two constructions, involving a negape-
riodic rotation Y

er (as defined in (5)) of a sequence Y of length 2n that is in turn
derived from a sequence X of odd length n. Lemma 4 analyses this construction
for the case r = ρ, where ρ is subject to the constraint that nρ is integer (which
forces the number b2nrc of rotated elements in the negaperiodic rotation Y

er to be
even). We then show in Theorem 5 that, in the specific case that X is a Legendre
sequence, Lemma 4 can be used to determine the asymptotic merit factor of Y

er for
all real r, regardless of whether b2nrc is even or odd.

Lemma 4. Let X be a sequence of odd length n, each of whose elements is bounded
in magnitude by a constant independent of n, and let Z be the 2-decimation of X.
Let r be a real number, and write ρ := bnrc/n and δ := n+1

2n . Define Y to be the
first 2n elements of the sequence X ⊗ (+,+,−,−). Then, as n −→∞,

∑
|u|<2n

[CY
eρ
(u)]2

=
∑
|u|<n

(
[CZr (u) + CZr+δ

(u)]2 + [CZr,Zr+δ
(u)− CZr+δ,Zr+2δ

(u) +O(1)]2
)
.

Proof. We firstly determine an explicit expression for [Y
eρ]j , and deduce an expres-

sion for CY
eρ
(u). By analysis of the cases u even and u odd, we then express |CY

eρ
(u)|

in terms of crosscorrelations of periodically rotated versions of the sequence Zr, for
both positive and negative values of u. Squaring and summing over u then gives
the required result.

WriteX = (x0, x1, . . . , xn−1), Y = (y0, y1, . . . , y2n−1), and Z = (z0, z1, . . . , zn−1).
Now element j mod 4 of the sequence (+,+,−,−) can be written as (−1)(j

2−j)/2,
for any integer j. By the definition of Y we therefore have

(15) yj = (−1)
j2−j

2 xj mod n for 0 ≤ j < 2n.

Write k := b j+2nρ
2n c. Since nρ = bnrc is integer, the definition (5) of Y

eρ gives, for
0 ≤ j < 2n,

[Y
eρ]j =

{
y(j+2nρ) mod 2n for 0 ≤ j < 2n− 2nρ

−y(j+2nρ) mod 2n for 2n− 2nρ ≤ j < 2n

= (−1)ky(j+2nρ) mod 2n

= (−1)ky(j+2nρ−2nk) mod 2n

= (−1)k+
(j+2nρ−2nk)2−(j+2nρ−2nk)

2 x(j+2nρ) mod n

from (15). Since n is odd, this implies that

[Y
eρ]j = (−1)

j2−j
2 −nρx(j+2nρ) mod n for 0 ≤ j < 2n.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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Therefore, for 0 ≤ u < 2n,

CY
eρ
(u) = (−1)

u2−u
2

2n−u−1∑
j=0

(−1)jux(j+2nρ) mod n x(j+u+2nρ) mod n

= (−1)
u2−u

2

2n−u−1∑
j=0

(−1)ju[X;X](j+2nρ) mod 2n[X;X](j+u+2nρ) mod 2n

= (−1)
u2−u

2

2n−u−1∑
j=0

(−1)juwjwj+u,

where W = (w0, w1, . . . , w2n−1) := (X;X)ρ. Take the absolute value, and separate
both the summation index j and the argument u into even and odd values, giving

∣∣CY
eρ
(2u)

∣∣ =
∣∣∣∣∣∣
n−u−1∑

j=0

w2jw2(j+u) +
n−u−1∑

j=0

w2j+1w2(j+u)+1

∣∣∣∣∣∣ for 0 ≤ u < n,(16)

∣∣CY
eρ
(2u+ 1)

∣∣ =
∣∣∣∣∣∣
n−u−1∑

j=0

w2jw2(j+u)+1 −
n−u−2∑

j=0

w2j+1w2(j+u)+2

∣∣∣∣∣∣ for 0 ≤ u < n.

(17)

We next express (16) and (17) in terms of crosscorrelations of periodically rotated
versions of the sequence Zr. Now, for all integer i, j satisfying 0 ≤ 2j + i < 2n we
have

w2j+i = [X;X](2j+i+2nρ) mod 2n

= x(2j+i+2nρ) mod n

= x(2j+(n+1)i+2nρ) mod n

= x2(j+niδ+bnrc) mod n,

by definition of δ and ρ. Since nδ = n+1
2 is integer because n is odd, we therefore

have, for all integer i, j satisfying 0 ≤ 2j + i < 2n,

w2j+i = z(j+niδ+bnrc) mod n

= [Zr+iδ]j .

Substitution in (16) and (17) then shows that∣∣CY
eρ
(2u)

∣∣ = ∣∣CZr
(u) + CZr+δ

(u)
∣∣ for 0 ≤ u < n,(18)

and ∣∣CY
eρ
(2u+ 1)

∣∣ = ∣∣CZr,Zr+δ
(u)−

(
CZr+δ,Zr+2δ

(u)− [Zr+δ]n−u−1[Zr+2δ]n−1

)∣∣
=
∣∣CZr,Zr+δ

(u)− CZr+δ,Zr+2δ
(u) +O(1)

∣∣ for 0 ≤ u < n,(19)

since, by assumption, the elements of X are bounded in magnitude by a constant
independent of n and so the term [Zr+δ]n−u−1[Zr+2δ]n−1 is O(1) as n −→∞.

We lastly find expressions corresponding to (18) and (19) for negative values of
the argument. For any sequence A, by definition

CA(u) = CA(−u) for 0 < u < n,(20)

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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and so (18) implies that∣∣CY
eρ
(−2u)

∣∣ = ∣∣CZr
(−u) + CZr+δ

(−u)
∣∣ for 0 < u < n.

By combining this with (18), we obtain

(21)
∑
|u|<n

[
CY

eρ
(2u)

]2 =
∑
|u|<n

[
CZr

(u) + CZr+δ
(u)
]2
.

Furthermore, by applying (20) to (19) we also have, for 0 ≤ u < n,∣∣CY
eρ
(−2u− 1)

∣∣ = ∣∣CZr,Zr+δ
(u)− CZr+δ,Zr+2δ

(u) +O(1)
∣∣

=
∣∣(RZr,Zr+δ

(u)− CZr,Zr+δ
(u− n)

)
−
(
RZr+δ,Zr+2δ

(u)− CZr+δ,Zr+2δ
(u− n)

)
+O(1)

∣∣
by (2), using the convention that CA,B(−n) = 0 for sequences A and B of length n.
But rotation of each of the sequences Zr and Zr+δ by nδ = n+1

2 elements (to
produce sequences Zr+δ and Zr+2δ) does not change their periodic crosscorrelation
function, so RZr,Zr+δ

(u)−RZr+δ,Zr+2δ
(u) is identically zero. Therefore∣∣CY

eρ
(−2u− 1)

∣∣ = ∣∣CZr,Zr+δ
(u− n)− CZr+δ,Zr+2δ

(u− n) +O(1)
∣∣ for 0 ≤ u < n.

By combining this with (19), we obtain
n−1∑

u=−n

[
CY

eρ
(2u+ 1)

]2 =
∑
|u|<n

[
CZr,Zr+δ

(u)− CZr+δ,Zr+2δ
(u) +O(1)

]2
,

which, after addition of (21), gives the required result.

We now take the sequence X of Lemma 4 to be a Legendre sequence and, using
Theorem 3, derive the asymptotic merit factor of the resulting sequence Y at all
negaperiodic rotations.

Theorem 5. Let X be a Legendre sequence of prime length n > 2, and let r be a
real number satisfying |r| ≤ 1

2 . Define Y to be the first 2n elements of the sequence
X ⊗ (+,+,−,−). Then

1
lim

n−→∞
F (Y

er)
=

{
1
6 + 8r2 for |r| ≤ 1

4
1
6 + 8(|r| − 1

2 )2 for 1
4 ≤ |r| ≤ 1

2 .

Proof. Write X = (x0, x1, . . . , xn−1) and let X ′ be the modified Legendre sequence
(0, x1, . . . , xn−1). The sequence Y ′, obtained using X ′ instead of X in the definition
of Y , differs from Y in exactly two elements. By Proposition 1, it is therefore
sufficient to show that 1/F (Y ′

er) has the asymptotic behaviour claimed for 1/F (Y
er).

To simplify notation, we continue to work with X and Y but set x0 := 0.
Write ρ := bnrc/n so that, by the definition (5),

[Y
er]j =

{
y(j+b2nrc) mod 2n for 0 ≤ j < 2n− b2nrc

−y(j+b2nrc) mod 2n for 2n− b2nrc ≤ j < 2n,

[Y
eρ]j =

{
y(j+2bnrc) mod 2n for 0 ≤ j < 2n− 2bnrc

−y(j+2bnrc) mod 2n for 2n− 2bnrc ≤ j < 2n.

For each n, either b2nrc = 2bnrc, in which case the length 2n sequences Y
er and Y

eρ

are identical, or else b2nrc = 2bnrc + 1, in which case Y
er and Y

eρ share a common
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10 Kai-Uwe Schmidt, Jonathan Jedwab and Matthew G. Parker

subsequence of length 2n − 1. By Proposition 1, it is therefore sufficient to show
that 1/F (Y

eρ) has the asymptotic behaviour claimed for 1/F (Y
er).

Let Z be the 2-decimation of X. For 0 ≤ j < n, this gives

[Z]j = x2j mod n

= (2j |n)

by (7). Then by (6) and the definition of a modified Legendre sequence,

[Z]j = (2 |n) [X]j for 0 ≤ j < n,

so that Z = (2 |n)X. Therefore

CZs,Zt
(u) = CXs,Xt

(u) for all integer u satisfying |u| < n and all real s, t.

Application of Lemma 4 to the modified Legendre sequence X then gives

1
n2

∑
|u|<2n

[
CY

eρ
(u)
]2 =

1
n2

∑
|u|<n

([
CXr (u) + CXr+δ

(u)
]2

+
[
CXr,Xr+δ

(u)− CXr+δ,Xr+2δ
(u) +O(1)

]2)
,(22)

where

δ = δ(n) :=
n+ 1
2n

.(23)

We complete the proof by using Theorem 3 to evaluate the expansion of the right
hand side of (22) as n −→∞. When 1

n2

∑
|u|<n[CXr,Xr+δ

(u) − CXr+δ,Xr+2δ
(u)]2 is

expanded into three sums, by Theorem 3 each of the sums is O(1) as n −→ ∞.
Therefore, by the Cauchy-Schwarz inequality, the additional contribution arising
from the inclusion of the term O(1) in the second square bracket of (22) is O(n−1/2),
which can be neglected. By applying Theorem 3 and (13) to the six resulting sums in
the expansion of the right hand side of (22) (noting from (23) that δ(n) = 1

2+O(n−1)
as n −→∞), and then taking the limit, we obtain

lim
n−→∞

1
n2

∑
|u|<2n

[
CY

eρ
(u)
]2

= ψ(r, 0, 0) + ψ(r + 1
2 , 0, 0)

+ 2ψ(r, 0, 1
2 ) + ψ(r, 1

2 , 0) + ψ(r + 1
2 ,

1
2 , 0)− 2ψ(r, 1

2 ,
1
2 )

= 2
3 + 32φ(r + 1

4 ,
1
4 ) + 16φ(0, 1

2 )(24)

by the definition (12) of ψ and by (14). By the definition (11) of φ, in the given
range |r| ≤ 1

2 we have

φ(0, 1
2 ) = 1

4 ,

φ(r + 1
4 ,

1
4 ) =

{
r2 for |r| ≤ 1

4(
|r| − 1

2

)2 for 1
4 ≤ |r| ≤ 1

2 .
(25)
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Now, since x0 = 0, the definition of Y gives [E(Y
eρ)]2 = (2n − 2)2. Substitution of

(25) into (24), together with the relation (3), then yields

1
lim

n−→∞
F (Y

eρ)
=

{
1
6 + 8r2 for |r| ≤ 1

4
1
6 + 8

(
|r| − 1

2

)2 for 1
4 ≤ |r| ≤ 1

2 ,

as required.

The maximum asymptotic merit factor obtained under the construction of The-
orem 5 is 6, which occurs at r = 0 and at r = 1

2 . The special cases r = 0 and r = 1
2

of Theorem 5 were proved by Xiong and Hall [11] in response to numerical evidence
presented by Parker [8, Figs. 1,2].

Corollary 6. Let X = (x0, x1, . . . , xn−1) be a Legendre sequence of prime length
n ≡ 1 (mod 4), and define Y to be the first 2n elements of the sequence X ⊗
(+,+,−,−). Then the sequence Y ; (−) is skew-symmetric of length 2n+ 1 and has
asymptotic merit factor 6.

Proof. Take r = 0 in Theorem 5, and apply Proposition 1 to show that

lim
n−→∞

F (Y ; (−)) = lim
n−→∞

F (Y ) = 6.

It remains to show that Y ; (−) is skew-symmetric. Since n ≡ 1 (mod 4), we know
that (−1 |n) = 1 (see [10, p. 184], for example), and it follows from (6) and (7) that

xn−j = xj for 0 < j < n.(26)

Now by writing Y ; (−) = (y0, y1, . . . , y2n), from (15) we find that, for 0 < j < n,

yn+j = (−1)
(n+j)2−(n+j)

2 xj

= (−1)j+
(n−j)2−(n−j)

2 xn−j

by (26). Then using (15) again we obtain

yn+j = (−1)jyn−j for 0 < j < n,

and by construction the same equation also holds for j = n since y0 = x0 = 1.
Therefore the sequence Y ; (−) is skew-symmetric, by the definition (1).

To our knowledge, Corollary 6, together with Corollary 9 to be proved in Section 5,
are the first known asymptotic results on the merit factor of a family of skew-
symmetric sequences.

In the case n ≡ 3 (mod 4), the sequence constructed in Corollary 6 does not
satisfy the skew-symmetry condition (1). However, in that case we can instead form
the length 2n+1 sequence Y ; (+) and then set the central element of this sequence
to be 0. The resulting ternary sequence (a0, a1, . . . , a2n) also has asymptotic merit
factor 6, and satisfies the following modification of the skew-symmetry condition:

an+j = (−1)j+1an−j for 0 < j ≤ n.
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12 Kai-Uwe Schmidt, Jonathan Jedwab and Matthew G. Parker

5. The Periodic Construction

In this section we present the second of our two constructions, involving a periodic
rotation Yr of a sequence Y of length 4n derived from a sequence X of odd length n.
Lemma 7 analyses this construction for the case r = ρ, where nρ is integer (which
forces the number b4nrc of rotated elements in Yr to be a multiple of 4). We then
show in Theorem 8 that, in the case that X is a Legendre sequence, Lemma 7 can
be used to determine the asymptotic merit factor of Yr for all real r.

Lemma 7. Let X be a sequence of odd length n, each of whose elements is bounded
in magnitude by a constant independent of n, and let Z be the 4-decimation of X.
Let r be a real number, and write ρ := bnrc/n and

δ :=

{
3n+1
4n for n ≡ 1 (mod 4)

n+1
4n for n ≡ 3 (mod 4).

Let Y be the length 4n sequence X ⊗ (+,+,+,−). Then, as n −→∞,

∑
|u|<4n

[
CYρ

(u)
]2 =

3∑
k=0

∑
|u|<n

(
3∑

i=0

(−1)
ik(i+k+2)

2 CZr+iδ,Zr+(i+k)δ
(u) +O(1)

)2

.

Proof. This proof is closely modelled on that of Lemma 4, and so is presented in
less detail.

Write X = (x0, x1, . . . , xn−1) and Y = (y0, y1, . . . , y4n−1). By definition of Y we
can write

yj = (−1)
j3−j2

2 xj mod n for 0 ≤ j < 4n.(27)

Since nρ = bnrc, the definition (4) of Yρ then gives

[Yρ]j = (−1)
j3−j2

2 x(j+4nρ) mod n for 0 ≤ j < 4n.

Therefore, for 0 ≤ u < 4n,

CYρ(u) = (−1)
u3−u2

2

4n−u−1∑
j=0

(−1)
ju(j+u+2)

2 x(j+4nρ) mod n x(j+u+4nρ) mod n

= (−1)
u3−u2

2

4n−u−1∑
j=0

(−1)
ju(j+u+2)

2 wjwj+u,

where W = (w0, w1, . . . , w4n−1) := (X;X;X;X)ρ. Take the absolute value, and
separate the summation index j according to its value mod 4 to obtain

|CYρ(u)| =

∣∣∣∣∣∣
3∑

i=0

(−1)
iu(i+u+2)

2

b 4n−u−i−1
4 c∑

j=0

w4j+iw4j+i+u

∣∣∣∣∣∣ for 0 ≤ u < 4n.

Since nδ is integer by definition of δ, a similar argument to that used in the proof
of Lemma 4 shows that

w4j+i = [Zr+iδ]j for all integer i, j satisfying 0 ≤ 4j + i < 4n.
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Therefore, for 0 ≤ u < n and 0 ≤ k ≤ 3,

|CYρ
(4u+ k)| =

∣∣∣∣∣∣
3∑

i=0

(−1)
ik(i+k+2)

2

b 4n−4u−k−i−1
4 c∑

j=0

[Zr+iδ]j [Zr+(i+k)δ]j+u

∣∣∣∣∣∣
=

∣∣∣∣∣
3∑

i=0

(−1)
ik(i+k+2)

2 CZr+iδ,Zr+(i+k)δ
(u) +O(1)

∣∣∣∣∣ .(28)

We deal with negative values of the argument of the left hand side of (28) as in
the proof of Lemma 4, using (20). For 0 < u < n and k = 0 this gives

(29) |CYρ(−4u)| =

∣∣∣∣∣
3∑

i=0

CZr+iδ
(−u) +O(1)

∣∣∣∣∣ ,
while for 0 ≤ u < n and k ∈ {1, 2, 3} we have

|CYρ
(−4u− k)|

=

∣∣∣∣∣
3∑

i=0

(−1)
ik(i+k+2)

2
(
RZr+iδ,Zr+(i+k)δ

(u)− CZr+iδ,Zr+(i+k)δ
(u− n)

)
+O(1)

∣∣∣∣∣
=

∣∣∣∣∣
3∑

i=0

(−1)
ik(i+k+2)

2 CZr+iδ,Zr+(i+k)δ
(u− n) +O(1)

∣∣∣∣∣ ,(30)

where the terms involving the periodic crosscorrelation R cancel since, for each
k ∈ {1, 2, 3}, (−1)

ik(i+k+2)
2 takes the value +1 twice and the value −1 twice as i

ranges over 0 ≤ i ≤ 3. By combining (29) and (30) with (28) we obtain the required
result.

We now take the sequence X of Lemma 7 to be a Legendre sequence and, using
Theorem 3, derive the asymptotic merit factor of the resulting sequence Y at all
periodic rotations.

Theorem 8. Let X be a Legendre sequence of prime length n > 2, and let r be a
real number satisfying |r| ≤ 1

2 . Let Y be the length 4n sequence X ⊗ (+,+,+,−).
Then

1
lim

n−→∞
F (Yr)

=

{
1
6 + 8r2 for |r| ≤ 1

4
1
6 + 8(|r| − 1

2 )2 for 1
4 ≤ |r| ≤ 1

2 .

Proof. Write X = (x0, x1, . . . , xn−1) and ρ := bnrc/n. By Proposition 1, we can
take x0 = 0. Furthermore, the length 4n sequences Yr and Yρ share a common
subsequence of length at least 4n − 3, and so by Proposition 1 it is sufficient to
show that 1/F (Yρ) has the asymptotic behaviour claimed for 1/F (Yr). Following
the method of proof of Theorem 5, the 4-decimation Z ofX is given by Z = (4 |n)X,
so by (6) we have Z = (2 |n)2X = X. Application of Lemma 7 then gives

1
n2

∑
|u|<4n

[
CYρ(u)

]2 =
1
n2

3∑
k=0

∑
|u|<n

(
3∑

i=0

(−1)
ik(i+k+2)

2 CXr+iδ,Xr+(i+k)δ
(u) +O(1)

)2

,

where

(31) δ = δ(n) :=

{
3n+1
4n for n ≡ 1 (mod 4)

n+1
4n for n ≡ 3 (mod 4).

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



14 Kai-Uwe Schmidt, Jonathan Jedwab and Matthew G. Parker

As n −→∞ we can neglect the O(1) term, as in the proof of Theorem 5, so that

lim
n−→∞

1
n2

∑
|u|<4n

[
CYρ

(u)
]2

= lim
n−→∞

3∑
k=0

3∑
i=0

3∑
j=0

(−1)
ik(i+k+2)+jk(j+k+2)

2

· 1
n2

∑
|u|<n

CXr+iδ,Xr+(i+k)δ
(u)CXr+jδ,Xr+(j+k)δ

(u)

=
∑

0≤i,j,k≤3

(−1)
ik(i+k+2)+jk(j+k+2)

2 ψ(r + i∆, k∆, (j − i)∆)

by Theorem 3 and (13), where from (31) we have δ(n) = ∆ + O(n−1) as n −→ ∞
and

∆ :=

{
3
4 for n ≡ 1 (mod 4)
1
4 for n ≡ 3 (mod 4).

(32)

By the definition (12) of ψ we then obtain

lim
n−→∞

1
n2

∑
|u|<4n

[
CYρ(u)

]2
=

∑
0≤i,j,k≤3

(−1)
ik(i+k+2)+jk(j+k+2)

2

(
1
6 + 8φ

(
r + i+j+k

2 ∆, 1
4

)
+ 2φ

(
k∆, 1

2

)
+ 2φ

(
(j − i)∆, 1

2

))
=

3∑
`=0

∑
0≤i,j,k≤3

i+j+k≡` (mod 4)

(−1)
ik(i+k+2)+jk(j+k+2)

2
(

1
6 + 8φ

(
r + `

8 ,
1
4

))
+ 2

∑
0≤i,j,k≤3

(−1)
ik(i+k+2)+jk(j+k+2)

2
(
φ
(
k∆, 1

2

)
+ φ

(
(j − i)∆, 1

2

))
(33)

by (14), for both possible values of ∆ given in (32). By direct calculation we find
that ∑

0≤i,j,k≤3
i+j+k≡` (mod 4)

(−1)
ik(i+k+2)+jk(j+k+2)

2 =

{
16 for ` = 2
0 for ` ∈ {0, 1, 3},

and that∑
0≤i,j,k≤3

(−1)
ik(i+k+2)+jk(j+k+2)

2 φ
(
k∆, 1

2

)
=

∑
0≤i,j,k≤3

(−1)
ik(i+k+2)+jk(j+k+2)

2 φ
(
(j − i)∆, 1

2

)
= 4

for both possible values of ∆. Substitution in (33) then gives

lim
n−→∞

1
n2

∑
|u|<4n

[
CYρ(u)

]2 = 16
(

7
6 + 8φ

(
r + 1

4 ,
1
4

))
,
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Binary sequences with large merit factor 15

and then, since [E(Yρ)]2 = (4n− 4)2, by (3) and (25) we conclude that

1
lim

n−→∞
F (Yρ)

=

{
1
6 + 8r2 for |r| ≤ 1

4
1
6 + 8

(
|r| − 1

2

)2 for 1
4 ≤ |r| ≤ 1

2 ,

as required.

The maximum asymptotic merit factor obtained under the construction of The-
orem 8 is 6, which occurs at r = 0 and at r = 1

2 . Theorem 8 explains the
numerical results obtained by Yu and Gong [12, Fig. 1], based on the sequence
Y = X ⊗ (+,+,+,−), for all values of r. It can readily be modified to explain also
their numerical results based on the related sequence X ⊗ (−,+,+,+).

Corollary 9. Let X = (x0, x1, . . . , xn−1) be a Legendre sequence of prime length
n ≡ 1 (mod 4), and let Y be the length 4n sequence X ⊗ (+,+,+,−). Then the
sequence Y ; (+) is skew-symmetric of length 4n + 1 and has asymptotic merit fac-
tor 6.

Proof. The proof is similar to that of Corollary 6. Take r = 0 in Theorem 8, and
apply Proposition 1 to show that

lim
n−→∞

F (Y ; (+)) = 6.

To show that Y ; (+) is skew-symmetric, write Y ; (+) = (y0, y1, . . . , y4n) and note
that (26) holds since n ≡ 1 (mod 4). Then from (27) we have, for 0 < j < 2n,

y2n+j = (−1)
(2n+j)3−(2n+j)2

2 xj mod n

= (−1)j+
(2n−j)3−(2n−j)2

2 x(2n−j) mod n

= (−1)jy2n−j ,

and by construction the same equation also holds for j = 2n since y0 = x0 = 1.

6. Conclusion

Theorems 5 and 8 establish the asymptotic merit factor of a negaperiodic con-
struction described in [8] and a periodic construction described in [12], based in
both cases on Legendre sequences. Corollaries 6 and 9 provide families of skew-
symmetric sequences having asymptotic merit factor 6, equal to the current best
proven result for lim supn→∞ Fn.

However there is considerable numerical evidence, though currently no proof, that
an asymptotic merit factor greater than 6.34 can be achieved for a family of binary
sequences constructed via periodic appending of a Legendre sequence [2]. Numerical
results displayed by Yu and Gong [12, Fig. 3] for the periodic construction, and
reported by Parker [9, p. 12] for the negaperiodic construction, indicate that both
constructions also attain a merit factor greater than 6.34 under suitable appending.
A possible direction for future research is to attempt to prove that the asymptotic
merit factor of these appended sequences is equal to the (as yet undetermined)
asymptotic merit factor of the periodically appended Legendre sequences described
in [2].
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Appendix: Proof of Theorem 3

This appendix contains a proof of Theorem 3. Our starting point is the method of
Høholdt and Jensen [4], which calculates the reciprocal merit factor of an arbitrary
sequence of odd length n as the sum of expressions involving complex nth roots
of unity. We generalise this method in Lemma 10 in order to calculate the sum
of products of crosscorrelations of periodic rotations of an arbitrary odd-length
sequence. We then prove Theorem 3 by applying Lemma 10 to the specific case of
a modified Legendre sequence.

Write

εj := e2πij/n for integer j, where i :=
√
−1.

Given a sequence A = (a0, a1, . . . , an−1) of length n, we define the z-transform of A
to be the function QA : C → C given by

QA(z) :=
n−1∑
k=0

akz
k,

and define

ΛA(j, k, `) :=
n−1∑
a=0

QA(εa)QA(εa+j)QA(εa+k)QA(εa+`) for integer j, k, `.(34)

Lemma 10. Let X be a sequence of odd length n. Let S and T be integers, and
write s := S/n and t := T/n. Then

(35)
1
n2

∑
|u|<n

CX,Xs(u)CXt,Xs+t(u) =
2n2 + 1

3n5
ΛX(0, 0, 0) +B + C +D,

where

B =
1
n5

n−1∑
k=1

[(
εTk + εSk

)
ΛX(0, 0, k) +

(
ε
−(S+T−1)
k + εk

)
ΛX(0, 0, k)

]
· 1 + εk
(1− εk)2

,

C = − 2
n5

∑
1≤k,`<n

k 6=`

[(
ε
−(S+T )
k + 1

)(
εT` + εS`

)
ΛX(0, k, `)

+ εS−1
k εT` ΛX(k, 0, `) +ε−(S+T )

k ε` ΛX(k, 0, `)
]
· εk
(1− εk)(1− ε`)

,

D =
4
n5

n−1∑
k=1

[(
εSk + εTk

)
ΛX(0, k, k) + εS+T−1

k ΛX(k, 0, k)
]
· 1
|1− εk|2

.

Proof. Let U , V , W , Y , Z be any sequences of length n. Straightforward manipu-
lation shows that

QU (z)QV (z−1) =
∑
|u|<n

CU,V (u)z−u for all z 6= 0.
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Since QU (ε−1
j ) = QU (εj), we then have

1
2n3

n−1∑
j=0

QU (εj)QV (εj) QW (εj)QZ(εj) +
1

2n3

n−1∑
j=0

QU (−εj)QV (−εj) QW (−εj)QZ(−εj)

=
1

2n3

n−1∑
j=0

∑
|u|<n

∑
|v|<n

(
1 + (−1)−(u+v)

)
CU,V (u)CW,Z(v)ε−(u+v)

j

=
1

2n2

∑
|u|<n

∑
u+v∈{0,n,−n}

(
1 + (−1)−(u+v)

)
CU,V (u)CW,Z(v)

=
1
n2

∑
|u|<n

CU,V (u)CZ,W (u),(36)

because n is odd and by definition CW,Z(−u) = CZ,W (u).
Let j be an integer and let r be real. By definition of Yr,

QYr (εj) = ε
−bnrc
j QY (εj)(37)

and then, by the interpolation formula

QY (−εj) =
2
n

n−1∑
k=0

QY (εk)
εk

εk + εj

(see [4, p. 162], for example), we have

QYr (−εj) =
2
n

n−1∑
k=0

ε
−bnrc
k QY (εk)

εk
εk + εj

,(38)

and therefore

QYr (−εj) =
2
n

n−1∑
k=0

ε
bnrc
k QY (εk)

εj
εk + εj

.(39)

Take U = X, V = Xs, W = Xs+t, and Z = Xt in (36) and substitute from (37),
(38) and (39) to obtain

1
n2

∑
|u|<n

CX,Xs
(u)CXt,Xs+t

(u)

=
1

2n3

n−1∑
j=0

|QX(εj)|4 +
1

2n3

(
2
n

)4 n−1∑
j=0

∑
0≤a, b, c, d<n

εSb ε
−(S+T )
c εTd

·QX(εa)QX(εb)QX(εc)QX(εd) ·
εa

εa + εj

εj
εb + εj

εc
εc + εj

εj
εd + εj

=
1

2n3
ΛX(0, 0, 0) +

8
n7

∑
0≤a, b, c, d<n

εSb ε
−(S+T )
c εTd εaεc

·QX(εa)QX(εb)QX(εc)QX(εd) ·
n−1∑
j=0

ε2j
(εa + εj)(εb + εj)(εc + εj)(εd + εj)

,(40)
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by definition (34) of ΛX . Høholdt and Jensen [4] calculated the value of the sum
over j in (40) according to which of a, b, c, d (in the range 0 ≤ a, b, c, d < n) are
equal and which are distinct, distinguishing five cases:
n−1∑
j=0

ε2j
(εa + εj)(εb + εj)(εc + εj)(εd + εj)

=



0 for a, b, c, d distinct

n2(n2 + 2)
48

· 1
ε2a

for a = b = c = d

n2

8
· εa + εd
εa(εa − εd)2

for a = b = c 6= d

−n
2

4
· 1
(εa − εc)(εa − εd)

for a = b, and a, c, d distinct

−n
2

2
· 1
(εa − εc)2

for a = b 6= c = d.

We therefore partition the sum over a, b, c, d in (40) into sums of the same four
types as those giving a non-zero result above, written in the same order, noting that
each type requires multiple contributions because of the asymmetry with respect to
a, b, c, d of the ε terms. This gives

(41)
1
n2

∑
|u|<n

CX,Xs
(u)CXt,Xs+t

(u) =
1

2n3
ΛX(0, 0, 0) +A+B + C +D,

where, after abbreviating QX to Q, the sums A, B, C, D are given by

A =
n2 + 2
6n5

n−1∑
a=0

|Q(εa)|4,

B =
1
n5

∑
0≤a,b<n

a 6=b

[(
εTb−a + εSb−a

)(
Q(εa)

)2
Q(εa) Q(εb)

+
(
ε
−(S+T−1)
b−a + εb−a

)(
Q(εa)

)2
Q(εa)Q(εb)

]
· εa(εa + εb)

(εa − εb)2
,

C = − 2
n5

∑
0≤a,b,c<n

a,b,c distinct

[(
ε
−(S+T )
b−a εTc−a + ε

−(S+T )
b−a εSc−a + εTc−a + εSc−a

)
|Q(εa)|2Q(εb)Q(εc)

+ εS−1
b−a ε

T
c−a

(
Q(εa)

)2
Q(εb) Q(εc)

+ ε
−(S+T )
b−a εc−a

(
Q(εa)

)2
Q(εb)Q(εc)

]
· εaεb
(εa − εb)(εa − εc)

,

D = − 4
n5

∑
0≤a,b<n

a 6=b

[(
εSb−a + εTb−a

)
|Q(εa)|2|Q(εb)|2

+ εS+T−1
b−a

(
Q(εa)

)2(
Q(εb)

)2] · εaεb
(εa − εb)2

.

By the definition (34),

A =
n2 + 2
6n5

ΛX(0, 0, 0),

and substitution in (41) gives the required term in ΛX(0, 0, 0). We complete the
proof by showing that the remaining sums B, C, D in (41) have the required form.
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For the sum B, replace the sum over b (where 0 ≤ b < n and b 6= a) by a sum over
k := (b− a) mod n (where 1 ≤ k < n) to give

B =
1
n5

n−1∑
a=0

n−1∑
k=1

[ (
εTk + εSk

) (
Q(εa)

)2
Q(εa) Q(εa+k)

+
(
ε
−(S+T−1)
k + εk

) (
Q(εa)

)2
Q(εa) Q(εa+k)

]
· (1 + εk)
(1− εk)2

,

and then use (34). For the sumD, use the same procedure together with the identity

(εa − εb)2 = −εaεb|1− εb−a|2.
For the sum C, replace the sum over b and c by a sum over k := (b− a) mod n and
` := (c− a) mod n to give

C = − 2
n5

n−1∑
a=0

∑
1≤k,`<n

k 6=`

[(
ε
−(S+T )
k + 1

) (
εT` + εS`

)
|Q(εa)|2Q(εa+k)Q(εa+`)

+ εS−1
k εT`

(
Q(εa)

)2
Q(εa+k) Q(εa+`)

+ε−(S+T )
k ε`

(
Q(εa)

)2
Q(εa+k) Q(εa+`)

]
· εk
(1− εk)(1− ε`)

,

and then use (34).

The method of Høholdt and Jensen [4] deals with the special case S = T = 0 of
Lemma 10.

Proof of Theorem 3. We apply Lemma 10 to the sequence Xr(n), setting S := ns(n)
and T := nt(n). Since S and T are integer for each n by assumption, the se-
quences Xs, Xt and Xs+t appearing in (35) map to Xr(n)+s(n), Xr(n)+t(n), and
Xr(n)+s(n)+t(n), respectively, so that the left hand side of (35) becomes

1
n2

∑
|u|<n

CXr(n), Xr(n)+s(n)(u)CXr(n)+t(n), Xr(n)+s(n)+t(n)(u).

We will prove the desired result by finding the asymptotic form of the right hand
side of (35) as n −→∞, evaluating the sumD and the term involving ΛXr(n)(0, 0, 0),
and bounding the sums B and C.

Write R := bnr(n)c and X = (x0, x1, . . . , xn−1). Since the modified Legendre
sequence X satisfies

QX(εj) =

{
xj
√
n for n ≡ 1 (mod 4)

ixj
√
n for n ≡ 3 (mod 4)

(see [10, p. 182], for example), where i :=
√
−1, the definition (34) together with

(37) gives

ΛXr(n)(j, k, `) = εRj−k+` · n2
n−1∑
a=0

xa xa+j xa+k xa+`.(42)

The term involving ΛXr(n)(0, 0, 0). Since X is a modified Legendre sequence,
we have

(43) x2
j =

{
0 for j = 0
1 for 0 < j < n.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



20 Kai-Uwe Schmidt, Jonathan Jedwab and Matthew G. Parker

Therefore (42) gives

2n2 + 1
3n5

ΛXr(n)(0, 0, 0) =
2n2 + 1

3n5
n2(n− 1)

=
2
3

+O(n−1) as n −→∞.(44)

The sums B and C. We have

|B| ≤ 1
n5

n−1∑
k=1

8 |ΛXr(n)(0, 0, k)|
|1− εk|2

=
8
n5

n−1∑
k=1

n2 |RX(k)|
|1− εk|2

by (42), (43) and the definition of RX in Section 2. Then by (8),

|B| ≤ 8
n3

n−1∑
k=1

1
|1− εk|2

.(45)

Since |ΛXr(n)(0, k, `)| = |ΛXr(n)(k, 0, `)| by (42), we also have

|C| ≤ 2
n5

∑
1≤k,`<n

k 6=`

6 |ΛXr(n)(0, k, `)|
|1− εk| · |1− ε`|

=
12
n5

∑
1≤k,`<n

k 6=`

n2 |RX((k − `) mod n)− xkx`|
|1− εk| · |1− ε`|

by (42) and (43). Then using (8) and the inequality |xkx`| ≤ 1,

|C| ≤ 24
n3

∑
1≤k,`<n

k 6=`

1
|1− εk| · |1− ε`|

Combining with (45), we obtain

3|B|+ |C| ≤ 24
n3

(
n−1∑
k=1

1
|1− εk|

)2

= O(n−1(log n)2) as n −→∞,(46)

since
∑n−1

k=1
1

|1−εk| ≤ n log n (see [4, p. 162], for example).
The sum D. By (42), for 1 ≤ k < n we have ΛXr(n)(0, k, k) = n2(n − 2) and
ΛXr(n)(k, 0, k) = ε2R

k · n2(n− 2), so that

D =
4(n− 2)
n3

n−1∑
k=1

εSk + εTk + ε2R+S+T−1
k

|1− εk|2
.

We wish to apply the identity

(47)
n−1∑
k=1

εjk
|1− εk|2

=
n2

2

(
|j|
n
− 1

2

)2

− n2 + 2
24

for integer j satisfying |j| ≤ n
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(see, [7, p. 621], for example). By the definition of R, S, and T and the
assumptions r(n) = r + O(n−1), s(n) = s + O(n−1), and t(n) = t + O(n−1),
as n −→∞ we have

(48) R = nr +O(1), S = ns+O(1), and T = nt+O(1).

Then, since |s| ≤ 1
2 and |t| ≤ 1

2 by assumption, we know that |S| ≤ n and
|T | ≤ n for all sufficiently large n.

Case 1: |2R+S + T − 1| ≤ n for all but finitely many n. In this case, we
apply (47) to show that, for all sufficiently large n,

(49) D =
4(n− 2)
n3

(
n2

2

[(
|S|
n
− 1

2

)2

+
(
|T |
n
− 1

2

)2

+
(
|2R+ S + T − 1|

n
− 1

2

)2
]
− n2 + 2

8

)
.

By (48), as n −→∞ we find that

D = 2
(
|s| − 1

2

)2 + 2
(
|t| − 1

2

)2 + 8
(
|r + s+t

2 | − 1
4

)2 − 1
2 +O(n−1).(50)

Case 2: |2R + S + T − 1| > n for infinitely many n. In this case (48),
together with the assumption |r + s+t

2 | ≤ 1
2 , implies that

(51) |2r + s+ t| = 1.

For each sufficiently large n, either |2R+S+T−1| ≤ n, so that (49) holds;
or else n < |2R + S + T − 1| ≤ 2n, in which case (by applying (47) with
j = 2R+S+T±n−1, choosing the appropriate sign for ± so that |j| ≤ n)
equation (49) again holds but with the term

(
1
n |2R+ S + T − 1| − 1

2

)2
replaced by

(
1
n |2R+ S + T − 1| − 3

2

)2. By (48) and (51), the contribu-
tion of this term as n −→∞ is (1− 3

2 )2 = (1− 1
2 )2, so the same conclusion

(50) applies as in Case 1.
The result now follows by substituting the asymptotic forms (44), (46) and (50)

in (35).
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